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Abstract

Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period
(2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin
(Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected
in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were
present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of
peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m22) were significantly
higher than the three other species: blue marlin (9.62 larvae 1000 m22), white marlin (5.44 larvae 1000 m22), and swordfish
(4.67 larvae 1000 m22). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and
several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current
velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models
(GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with
densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was
strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in
slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life
habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e.,
Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.
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Introduction

Atlantic billfishes (family Istiophoridae) and swordfish (family

Xiphiidae) are highly migratory species that frequent open ocean

ecosystems throughout their ranges [1–3]. Populations of several

Atlantic species, including blue marlin (Makaira nigricans), white

marlin (Kajikia albida), sailfish (Istiophorus platypterus), and swordfish

(Xiphias gladius), are assumed to be fully exploited or overfished

with biomass of certain species below levels required to achieve

maximum sustainable yield [4,5]. Apart from their economic value

in tropical and subtropical fisheries [6], billfishes and swordfish

along with other oceanic predators play important roles in marine

ecosystems [7]. Changes in abundances of oceanic predators can

influence their top-down regulation of food webs, in some cases

resulting in cascading effects that can alter the productivity,

stability, and structure of marine ecosystems [8–10].

Conservation and rebuilding efforts for Atlantic billfish and

swordfish stocks will ultimately rely on an improved understanding

of habitats and environmental conditions required during

ontogeny. Given that overexploitation and incidental bycatch of

these oceanic predators are arguably the most critical issues facing

fishery scientists [11], research on habitat use and movement of

adult billfishes and swordfish is currently at the forefront because

of the presumed value of these data for mitigating losses through

the spatial management of fishing effort [12–15]. In contrast, our

understanding of habitat use during the critical early life period is

far less studied even though larval indices are valuable for

identifying spawning/nursery grounds [16] and assessing popula-

tion trends [17,18]. In addition, it is well recognized that larval

transport and/or survival varies as a function of time and location

[19,20], and therefore determining spatio-temporal patterns of

habitat use during early life as well as identifying the biological and

physicochemical attributes of presumed nurseries are needed to

define essential habitats of Atlantic billfish and swordfish

populations [21,22].

Surveys of billfish and swordfish larvae in specific areas of the

western North Atlantic Ocean (WNAO) and adjacent waters

indicate that several regions are used as spawning and nursery
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areas of blue marlin, white marlin, sailfish, and swordfish. The

majority of early life studies to date in the WNAO, particularly for

billfishes, has occurred in a fairly restricted geographic area

encompassing the Straits of Florida and the Bahamas [16,23,24],

while data on the distribution and abundance of billfish and

swordfish larvae from other potential spawning and nursery areas

is presently limited or unavailable. The Gulf of Mexico is

increasingly recognized as an important foraging and spawning

area of Atlantic billfishes and swordfish, and this assumption is

based primarily upon the fact that large numbers of adults are

caught in this region by pelagic longliners during presumed

spawning periods [25,26]. As a result, spawning stock biomass

within this region appears to be high, indicating that the Gulf may

represent essential spawning and nursery habitat of these species.

The purpose of the present study was to conduct ichthyoplank-

ton surveys in surface waters of the northern Gulf of Mexico

(NGoM) over an extended time period to determine the relative

value of this region as a spawning and nursery habitat of billfish

and swordfish populations. In addition to documenting regional

patterns of occurrence and abundance, we examined the influence

of ocean conditions, both biotic and abiotic, on the distribution

and abundance of blue marlin, white marlin, sailfish, and

swordfish larvae using generalized additive models (GAMs). Outer

shelf and slope waters of the NGoM represent an ideal location for

this study because they are dominated by mesoscale features such

as cyclonic and anti-cyclonic eddies and associated zones of

confluence (i.e. fronts), which are assumed to be important early

life habitats of pelagic fishes [27]. Moreover, the NGoM receives

substantial freshwater inflow and nutrient loading from the

Mississippi River and represents one of the most productive areas

of the WNAO, adding to the unique nature of this region and its

potential as important early life habitat of pelagic fishes. Finally,

the NGoM was recently impacted by the Deepwater Horizon oil

spill, and thus information included here represents valuable

baseline data that can be used to evaluate the effects of this event

on Atlantic billfish and swordfish populations.

Methods

Sampling design and data collection
Ichthyoplankton surveys were conducted in shelf and slope

waters of the NGoM in a sampling corridor encompassing a region

from approximately 26.5 to 28.0uN latitude and 88.0 to 94.0uW
longitude (Fig. 1). Two surveys were conducted each year over the

three-year study period (2006 to 2008), and sampling was

restricted to June and July because this period represents the

primary spawning months of targeted taxa [28]. All sampling was

conducted during the day (ca. 0700 to 1900 h), and billfish and

swordfish larvae were collected with paired neuston nets (2-m

width 61-m height frame) equipped with two different mesh sizes:

500 mm and 1200 mm. Nets were towed through surface waters at

approximately 2.5 knots for 10 minutes, and paired tows were

taken at each station. At the start of each tow, approximately

0.2 m of the neuston net frame was above the water; however, due

to changes in sea state and a variety of other factors, the depth of

the surface water sampled within and across net tows ranged from

approximately 0.6 to 1.0 m. Sampling was conducted at

approximately 15-km intervals between stations to allow coverage

of large areas encompassing multiple oceanographic features.

General Oceanics flowmeters (Model 2030R, Miami, FL) were

placed within each neuston net to determine surface area sampled

during each tow, which was used in conjunction with catch data to

determine the abundance (i.e., density) of billfish and swordfish

larvae at each sampling station. Permits for collections of fish

larvae were issued by the Highly Migratory Species Management

Division of the National Oceanic and Atmospheric Administration

(permits: Billfish-SRP-06-01, Billfish-EFP-07-03, and Billfish-EFP-

08-03).

Fishes and associated fauna collected with neuston nets were

preserved onboard the vessel in 95% ethanol. Sargassum biomass

(pooled weight of S. natans and S. fluitans) in each neuston net was

also recorded. Ichthyoplankton were later sorted in the laboratory,

and all billfish and swordfish larvae were separated from other

taxa. Larvae were enumerated and the standard length (SL) of

Figure 1. Map of sampling area (outlined) in outer shelf and slope waters of the northern Gulf of Mexico. Ichthyoplankton surveys
conducted in June and July over the three-year period: 2006–2008.
doi:10.1371/journal.pone.0034180.g001
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each individual was measured to the nearest 0.1 mm. Billfish and

swordfish larvae do not have a full complement of fin rays until

approximately 20 mm SL [29,30]. Given that over 99% of the

specimens collected with neuston nets were less than 20 mm SL,

individuals are hereafter referred to as larvae. The abundance of

blue marlin, white marlin, sailfish and swordfish larvae at each

station was derived by summing catch numbers from both 500 and

1200 mm neuston nets and dividing by the distance towed of both

nets combined. Because it is inherently difficult to determine the

actual volume of water sampled with partially submerged neuston

net deployments, abundance is reported here as the number of

larvae collected per square meter of ‘surface water’ sampled. In

response, our estimate of density is based on the number of larvae

per unit area rather than volume. For all four species, density at

each station was expressed as number of larvae 1000 m22 of

surface water, and average area sampled with both nets at each

station was approximately 4500 m2.

Swordfish larvae were identified visually using anatomical and

morphometric features [30]. Although diagnostic characters are

evident for billfish larvae, species identification for smaller larvae

(,10 mm SL) in this family is problematic and can lead to

identification errors among the three species examined [24]. In

response, identification of billfish larvae less than 10 mm SL was

determined using a species-specific multiplex polymerase chain

reaction (PCR) assay. Our multiplex PCR assay followed the

protocol described by Simms et al. [24] and developed by J.

Magnussen and M. Shivji at Nova Southeastern University.

Briefly, a single eyeball was removed from each larva and DNA

was extracted using a QIAGEN DNeasy blood and tissue kit. A

multiplex PCR was performed using an Eppendorf mastercycler

gradient, QIAGEN Hot Star Taq DNA Polymerase (QIAGEN #
203203), and PCR grade dNTP mix (QIAGEN # 201901). Four

primer pairs were used in each PCR reaction: a universal billfish

primer set and species-specific primers for sailfish, white marlin,

and blue marlin. PCR products were examined by means of gel

electrophoresis with 1% agarose gels containing ethidium

bromide. Species identification was based on species-specific gel

banding patterns visualized on an ultraviolet trans-illuminator. For

the majority of our collections (.90%), all billfish larvae were

assayed from individual net tows; however, for collections with

more than 20 billfish larvae, a subsample of individuals was

assayed and deemed sufficient for identification purposes unless

the results indicated that more than one species of billfish was

present.

Sea surface temperature and salinity were measured at each

sampling station using a Sonde 6920 Environmental Monitoring

System (YSI Inc.). Other environmental data at sampling stations

were extracted from remotely sensed data to match sampling dates

and locations. Sea surface height anomaly (SSHA, cm) and sea

surface current velocity data (m s21) were generated every 7 days

from merged satellite altimetry measurements using Jason-1,

ENVISAT/ERS, Geosat Follow-On and Topex/Poseidon inter-

laced (AVISO, www.aviso.oceanobs.com) [31]. Sea surface height

anomaly and current velocity data consisted of averaged time

periods with 0.25u resolution. Distance to the Loop Current was

estimated by measuring the linear distance from the edge of this

feature (based on the location of the 20-cm SSHA contour) to the

sampling station. Sea surface chlorophyll concentrations (mg m23)

were downloaded from the Sea-viewing Wide Field-of-view Sensor

(SeaWiFS) (http://las.pfeg.noaa.gov). Chlorophyll data consisted

of 8-d averaged time periods with 0.1u resolution. Water depth at

all sampling stations was extracted from Satellite Geodesy, Scripps

Institution of Oceanography (http://topex.ucsd.edu/

marine_topo/).

Data analysis and modeling
Generalized additive models (GAMs) were used to investigate

the influence of environmental conditions on the abundance (i.e.,

density) of each species. Density at each station was considered to

be a count variable (non-negative integers) for modeling purposes.

GAMs are a nonparametric extension of general linear models

(GLMs) that allow for complex relationships between response and

explanatory variables [32,33]. General GAM construction fol-

lowed the equation:

E ½y�~g{1 b0z
X

k

Sk(xk)

 !

Where E ½y� equals the expected values of the response variable

(density), g represents the link function, b0 equals the intercept, x
represents one of k explanatory variables, and Sk represents the

smoothing function of each respective explanatory variable.

Poisson models with a logarithm link were fit with cubic regression

splines within the software R [34] mgcv library [35,36]. The

flexibility of splines are automatically reduced from a given

maximum degrees of freedom by minimizing the General Cross

Validation (GCV) score [35]. To avoid generating ecologically

unrealistic responses (i.e. overfitting) [37,38], cubic splines were

restricted to 3 degrees of freedom (df). Lower and higher levels of

variable complexity (2 and 4 df, respectively) were also examined

and our conservative level of complexity (3 df) was deemed most

appropriate given the tradeoff between model complexity and

deviance [39].

A manual backwards stepwise procedure based on minimizing

the Akaike Information Criterion (AIC, [40]) was used to select

explanatory variables influencing larval density. Model selection

was based on the premise that smaller AIC values represented

models with the best fit, based on tradeoff between model

complexity (number of variables) and fit (based on goodness of fit)

[41]. Although backward selection was based on AIC values,

approximate significance (p values) of smoothed variables in each

model were also used to guide the backwards selection of variables.

At the step when each of the remaining variables resulted in an

increased AIC, the backward selection process was halted unless

the removal of the non-significant term (p.0.05) resulted in an

AIC value that was comparable (,1%) to that of the model that

included this variable. Collinearity among explanatory variables

was examined through Spearman rank correlation coefficient

(Spearman r). When the Spearman r between two variables was

greater than 0.5, the relative influence of each predictor was

examined alone with a GAM and the variable that resulted in the

lower AIC value was allowed to enter the initial model prior to

backwards stepwise selection. Spatial autocorrelation was investi-

gated for all four species by examining residuals from final GAMs

with Moran’s I; p-values were non significant (p.0.05) for all four

species. To examine model fit, overall percent of deviance

explained (DE) for each model was calculated (([null deviance –

residual deviance]/null deviance) 6100). After final models were

selected, we then excluded each variable individually from our

final models and examined the change in both AIC or DE with

and without each variable (denoted as DAIC and DDE), which

provided a means of assessing the relative importance of each

variable.

Results

Overall, 2888 billfish and 264 swordfish larvae were collected

during the six surveys conducted from 2006 to 2008 (Table 1).

Habitat Associations of Billfish and Swordfish
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Sailfish larvae were the dominant billfish (n = 2033), accounting

for 70.4% of all istiophorid larvae collected. Mean density of

sailfish per survey ranged from 0.45 to 1.99 larvae 1000 m22. Blue

marlin (n = 722) and white marlin (n = 133) comprised 25.0% and

4.6% of the billfish larvae in our collections, respectively. Mean

density of blue marlin per survey ranged from 0.04 to 0.76 larvae

1000 m22, while white marlin ranged from 0.00 to 0.33 larvae

1000 m22. Density of swordfish (n = 264) ranged from 0.04 to 0.32

larvae 1000 m22 among the six surveys. Areas of peak production

were detected, with maximum density estimates at single stations

being markedly higher than survey means: sailfish (22.09 larvae

1000 m22), blue marlin (9.62 larvae 1000 m22), white marlin

(5.44 larvae 1000 m22), and swordfish (4.67 larvae 1000 m22).

Intra- and/or inter-annual variation in the occurrence and

abundance of larvae was detected for all four species (Table 1).

Sailfish larvae were detected in all months and years sampled, with

percent frequency of occurrence per survey (based on presence at

stations sampled) ranging from 24.8% (July 2008) to 48.4% (July

2006). Surveys with the highest mean density of sailfish were June

2006 (1.99 larvae 1000 m22) and July 2006 (1.71 larvae

1000 m22), and mean density was lower for 2007 and 2008

surveys (range 0.36 to 0.84 larvae 1000 m22). Blue marlin larvae

were collected in all surveys but density was higher each year

during the July survey: 2006 (0.43 larvae 1000 m22), 2007 (0.76

larvae 1000 m22), and 2008 (0.21 larvae 1000 m22). Percent

frequency of occurrence of blue marlin larvae among surveys was

also higher in July (24.1 to 33.8% across years) than June (8.0 to

27.1% across years). Density of white marlin larvae peaked during

June surveys, with the highest overall density occurring in June

2008 (0.30 larvae 1000 m22). Percent frequency of occurrence of

white marlin during June surveys ranged from 14.7 to 16.1%,

which is nearly an order of magnitude higher than values observed

for July surveys (range 0.0 to 2.4%). Swordfish larvae were

collected in all months and years surveyed, and mean density was

greatest for the July 2006 survey (0.32 larvae 1000 m22). Percent

frequency of occurrence for swordfish ranged from 9.6% (July

2008) to 29.2% (July 2006).

Longitudinal and latitudinal patterns in the distribution and

abundance of billfish and swordfish larvae were detected, and

general spatial trends were consistent across survey years for

certain species. Of the four taxa examined, sailfish were the most

widespread (Fig. 2), with individuals frequently found throughout

much of our sampling corridor in the majority of surveys.

Nevertheless, some degree of longitudinal variation was present for

sailfish with peak catches typically east of 91uW in June and

shifting more westward in July. For blue marlin, distributions were

more restricted and larvae were primarily collected in areas east of

90uW, particularly in areas proximal to the western margin of the

Loop Current in waters south of 28uN (Fig. 2). Similarly, white

marlin larvae were caught predominantly in waters east of 90uW
in all three years, and the occurrence and abundance were

typically highest along the western margin of the Loop Current in

slope waters located at approximately 88uW (Fig. 3). East to west

variation in swordfish density was less pronounced, although

catches in certain years (i.e., 2007) were higher east of 90uW in

both outer shelf (,28uN transect) and slope waters south of the

shelf break (Fig. 3). Several areas of high density were detected for

swordfish, with most larvae in areas between 89uW and 91.5uW.

Final GAMs and model performance
Initial correlation analysis was performed for oceanographic

and position variables (Table S1). Significant collinearity (Spear-

man r.0.5) was detected between latitude and water depth (0.71),

longitude and water depth (0.52), and longitude and distance to

the Loop Current (0.72). The relative influence of each variable

was examined with GAMs and lower AIC scores were observed

for models that included water depth and distance to the Loop

Current over those with latitude or longitude. In response, latitude

and longitude were excluded as variables in the backwards

selection process for determining the final models of each species.

Final models were based on abundance (density) data due the high

explanatory power of these models relative to GAMs based on

presence/absence data (Table S2).

Sailfish model
The final sailfish model included 7 variables, and AIC for the

final model was 8407, with percent of deviance explained at 43.6%

(Table 2). Retained variables with associated DAIC values were

distance to Loop Current (1283), Sargassum (825), year (580), sea

surface temperature (473), salinity (386), sea surface height

anomaly (326), and sea surface current velocity (223) (Table 2).

DDE was also used to assess the importance of each environmental

variable for the sailfish model, and the relative contribution of

retained variables was similar between the two measures.

Response plots from the sailfish GAM indicated that density of

sailfish larvae was higher in waters close to the Loop Current

(,100 km) with moderate to high salinity (.34), low to moderate

sea surface temperatures (,30.5uC), and in areas with negative

(cold core eddies) or slightly positive sea surface height anomalies

(Fig. 4, 5). Sailfish larvae were more abundant in areas with both

Table 1. Summary data on collection of billfish and swordfish larvae for six surveys conducted from 2006 to 2008 in the northern
Gulf of Mexico.

Sailfish Blue marlin White marlin Swordfish

Survey date N Density % Freq N Density % Freq N Density % Freq N Density % Freq

June 15–20, 2006 691 1.99 48.4 18 0.06 16.1 22 0.06 16.1 20 0.06 17.7

July 31-Aug 6, 2006 634 1.71 47.7 346 0.43 33.8 1 0.00 1.5 136 0.33 29.2

June 20–24, 2007 213 0.45 23.7 102 0.31 27.1 30 0.09 15.3 59 0.15 20.3

July 20–24, 2007 70 0.42 32.8 182 0.76 41.4 0 0.00 0.0 14 0.07 15.5

June 9–13, 2008 259 0.84 37.3 12 0.04 8.0 78 0.30 14.7 23 0.08 10.7

July 27-Aug 1, 2008 166 0.37 24.1 62 0.22 24.1 2 0.01 2.4 12 0.04 9.6

2033 0.96 35.7 722 0.30 25.1 133 0.08 8.3 264 0.12 17.2

Count (N), density (larvae 1000 m22), and percent frequency of occurrence estimates are shown for sailfish, blue marlin, white marlin and swordfish.
doi:10.1371/journal.pone.0034180.t001
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high and low Sargassum biomass compared to stations with

moderate levels (5 to 25 kg) (Fig. 6). Variables not retained in

the sailfish model were month, sea surface chlorophyll, and water

depth.

Blue marlin model
The final blue marlin model included 8 variables, and AIC for

the final model was 2140, with percent of deviance explained at

62.3% (Table 2). DAIC values of retained variables indicated that

sea surface salinity (256), year (201), Sargassum biomass (162), and

water depth (142) were the most influential variables, with sea

surface temperature (113), sea surface current velocity (97), sea

surface height anomaly (93), and distance to Loop Current (42)

also contributing. DDE for variables retained in the model ranged

from 1.0 to 5.8%, and similar to DAIC, observed DDE values were

the highest for sea surface salinity (5.8%), year (4.5%), and

Sargassum (3.8%). Response plots from the blue marlin GAM

showed that larvae were most abundant in areas closer to the Loop

Current and in surface waters with higher current velocities

relative to other areas sampled (Fig. 4, 5). In addition, density was

positively related to water depth and greater in areas with lower

sea surface temperatures (28–30uC) and higher salinity (36 to 37)

(Fig. 4), which are conditions typically associated with oceanic

water masses off the continental shelf in slope waters. Density of

blue marlin larvae was higher in areas with both negative and

positive sea surface height anomalies (Fig. 4), suggesting that larvae

were associated with cold and warm cores features. Finally, density

of blue marlin larvae was inversely related to Sargassum biomass

collected in neuston nets (Fig. 6).

White marlin model
The final white marlin model included 9 variables, and AIC for

the final model was 570, with percent of deviance explained at

nearly 80% (Table 2). Influential variables with associated DAIC

values were Sargassum biomass (126), sea surface temperature (99),

distance to Loop Current (91), water depth (76), and sea surface

salinity (58); DDE for these influential variables ranged from 2.4 to

5.1% (Table 2). DAIC values for the four remaining variables

included in the final model (sea surface chlorophyll, sea surface

current velocity, month, year) were less than 40, and DDE was less

than 2% for each of these variables. Response plots from the white

marlin GAM indicated that larvae were most abundant in areas

with lower sea surface temperatures (28–30uC) relative to other

areas surveyed (Fig. 4). In addition, density was positively related

to both water depth and sea surface salinity (Fig. 4, 5), suggesting

that larvae were most abundant in areas off the continental shelf

(i.e., slope waters) or rather areas far removed from coastal

influences such as freshwater inflow from the Mississippi River.

Relationships with distance to Loop Current and sea surface

current velocity were more complex with the density of white

marlin larvae greater at both the lower and higher ends of the

ranges for both variables (Fig. 5). Similar to blue marlin, density

was lowest in collections with large amounts of Sargassum (Fig. 6).

Swordfish model
The final swordfish model included 7 variables, and AIC for the

final model was 1174, with percent of deviance explained at 54.9%

(Table 2). Retained variables with associated DAIC values were

distance to Loop Current (242), sea surface height anomaly (235),

Sargassum biomass (155), year (142), sea surface salinity (79), water

depth (69), and sea surface temperature (37). The AIC for the final

model was 1174, and percent of deviance explained by this model

was 55.9%. The relative importance of each variable as indicated

by DDE was consistent with DAIC; DDE of the three most

influential variables (distance to Loop Current, sea surface height

anomaly, and Sargassum) were between 7.8 and 12.0% (Table 2).

Response plots from the swordfish GAM showed that larvae were

most abundant in areas with moderate to high salinity (34–38) and

low sea surface temperature (,28.5uC), relative to other areas

surveyed (Fig. 4). Similar to sailfish, a negative relationship

between sea surface height anomaly and swordfish density was

observed (Fig. 4), with the highest abundances in areas with

negative anomalies (i.e., cold core eddies). Density was highest

near the Loop Current, particularly at water depths from 1500–

2500 m (Fig. 5). Density of swordfish larvae was negatively related

to Sargassum biomass, with high catches at stations with little or no

Sargassum (Fig. 6).

Discussion

The occurrence and density of billfish and swordfish larvae in

our study area indicate that the NGoM serves as spawning and

early life habitat of all four species, particularly sailfish and blue

marlin. Direct comparisons of abundance with other studies are

problematic due to differences in sampling designs and gear types;

nevertheless, our estimates of mean and maximum densities as well

as percent frequency of occurrence of sailfish and blue marlin

larvae were comparable or at times higher than reported values

from other putative spawning and nursery areas in the western

Atlantic, including the Straits of Florida and the Bahamas

[23,42,43]. Over the three-year sampling period, nearly 40% of

our net tows contained sailfish larvae with blue marlin present in

approximately 25% of the samples. Both species were consistently

caught over the three-year study period and present during all

surveys. In addition, peak densities of sailfish (22 larvae 1000 m22)

and blue marlin (10 larvae 1000 m22) were at the upper end of

previously reported ranges for these species [23,26,42]. Although

swordfish and white marlin catches were lower, white marlin

larvae were present in all but one survey while swordfish larvae

were present in all surveys, indicating that the region may

represent suitable spawning and nursery habitat for some fraction

of the Atlantic populations of both species.

Intra- and inter-annual variability in the occurrence or

abundance of larvae is common for pelagic species inhabiting

the NGoM [22,44]. Given that our sampling was limited to the

mid-summer period of June and July, the lack of a month or intra-

annual effect was not unexpected for sailfish and blue marlin,

which are known to spawn throughout the summer [28,43].

Swordfish display year-round spawning in the Atlantic Ocean

[43,45,46], and similar to sailfish and blue marlin, no month effect

was detected. Conversely, month was retained as a variable in the

white marlin model, which was likely due to the fact that this

species typically spawns from April to June [47]. Therefore, our

July sampling period was outside the primary spawning season of

white marlin, explaining the low catch numbers observed during

this month. Inter-annual variability in the occurrence and

Figure 2. Spatial and temporal (month and year) variability in the density of sailfish and blue marlin larvae collected in
ichthyoplankton surveys from 2006 (top), 2007 (middle), and 2008 (bottom) in the northern Gulf of Mexico. June (blue) and July (red)
survey shown and colored lines represent the observed margin of the Loop Current during each sampling trip (coded by color). Density (larvae
1000 m22) denoted by circle size.
doi:10.1371/journal.pone.0034180.g002
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abundance of each species was more pronounced and varied

markedly over the three-year sampling period. In fact, maximum

observed density among the six surveys occurred in different years

for the three billfish species: sailfish (June 2006), blue marlin (July

2007), and white marlin (June 2008). Temporal variability in egg

and larval production has been linked to differences in the

abundance (spawning stock biomass) and demographics (age

structure) of adults [48–50], and thus annual shifts in the spawning

stock biomass of all four species in the NGoM may be partly

responsible for observed inter-annual trends in our catch numbers

of larvae.

Similar associations between larval density and the abiotic or

biotic factors included in our GAMs were observed for sailfish,

blue marlin, white marlin, and swordfish. In fact, response plots

(smoothing curves) depicting relationships between larval density

and environmental variables (e.g., sea surface temperature,

salinity, distance to Loop Current, water depth, Sargassum biomass)

were often similar for three or four of the species examined.

Analogous habitat requirements convey that some degree of niche

overlap occurs and emphasizes the importance of outer continen-

tal shelf and slope waters as early life habitat of all four species. In

addition, our results indicate that slope waters in the eastern

section of our sampling corridor represent a hotspot for billfishes

and swordfish (Figure 7), and therefore future efforts to rebuild

Atlantic stocks of these pelagic fishes may benefit by protecting this

specific region of the NGoM.

While the importance of biotic and abiotic factors was often

similar between and among species examined, differences in the

percent deviance explained (DE) for each final model provided

species-specific insights regarding what constitutes important or

suitable early life habitat of each species. We observed that percent

deviance explained in final models of the blue marlin and white

marlin was considerably higher than the sailfish model and to a

lesser degree swordfish. Interestingly, sailfish larvae were the most

abundant, and the horizontal distribution of this species was far

more widespread than the other three taxa, signifying that sailfish

Figure 3. Spatial and temporal (month and year) variability in the density of white marlin and swordfish larvae collected in
ichthyoplankton surveys from 2006 (top), 2007 (middle), and 2008 (bottom) in the northern Gulf of Mexico. June (blue) and July (red)
survey shown and colored lines represent the observed margin of the Loop Current during each sampling trip (coded by color). Density (larvae
1000 m22) denoted by circle size.
doi:10.1371/journal.pone.0034180.g003

Table 2. Environmental and temporal variables in final generalized additive models for sailfish, blue marlin, white marlin and
swordfish.

Sailfish AIC = 8407 DE = 43.6% Blue marlin AIC = 2140 DE = 62.3%

Variable Final Model Delta AIC Delta DE Final Model Delta AIC Delta DE

Month

Year Year 580 3.8% Year 201 4.5%

SSHA SSHA 326 2.3% SSHA 93 2.1%

SSCV SSCV 223 1.6% SSCV 97 2.2%

SSChl

SST SST 473 1.4% SST 113 2.6%

Salinity Salinity 386 2.8% Salinity 256 5.8%

Water Depth Depth 142 3.3%

Sargassum Sargassum 825 6.0% Sargassum 162 3.8%

Distance LC Distance LC 1283 9.3% Distance LC 42 1.0%

White marlin AIC = 570 DE = 79.6% Swordfish AIC 1174 DE = 55.9%

Variable Final Model Delta AIC Delta DE Final Model Delta AIC Delta DE

Month Month 17 0.9%

Year Year 13 0.9% Year 142 7.2%

SSHA SSHA 235 12.0%

SSCV SSCV 32 1.4%

SSChl SSChl 35 1.6%

SST SST 99 5.1% SST 37 2.1%

Salinity Salinity 58 3.3% Salinity 79 4.3%

Water Depth Depth 76 2.4% Depth 69 3.7%

Sargassum Sargassum 126 4.6% Sargassum 155 7.8%

Distance LC Distance LC 91 4.5% Distance LC 242 12.0%

Akaike’s Information Criterion (AIC) and percent deviance explained (DE) is given for each final model. DAIC and DDE values are based on the difference if the variable
was excluded from the final model. Variables (codes): sea surface height anomaly (SSHA), sea surface current velocity (SSCV), sea surface chlorophyll (SSChl), sea surface
temperature (SST), and Distance to Loop Current (distance LC).
doi:10.1371/journal.pone.0034180.t002
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larvae are present across a wider range of environmental

conditions compared to the three other species. In contrast, the

more limited distribution of blue marlin and white marlin is

possibly due to increased sensitivity or restricted tolerances to

environmental conditions. The reduced ‘capture’ windows or

limited distributions of blue marlin and white marlin likely

increased the relative influence or strength of predictor variables in

the final models, which in turn improved overall fits of these

models relative to the sailfish model. Similarly, other studies have

demonstrated that the predictive capabilities of habitat suitability

models for species or populations with smaller distributions/ranges

or more limited physiological tolerances to environmental

conditions are typically superior to species that range widely

[38,51].

Physicochemical conditions within a nursery area are known to

influence survival and cohort biomass, particularly salinity and

temperature, which have been shown to be important variables in

habitat suitability models for early life stages of marine fishes [52–

54]. In the present study, salinity and temperature were each

retained in the final models of all four species, and both appear to

be important determinants of habitat quality for these species.

Density of each species was typically greater at higher salinities

and lower temperatures within the range observed in our sampling

corridor. These conditions correspond to offshore water masses in

the NGoM, and thus it is not surprising that water depth was

retained in the final models of blue marlin, white marlin, and

swordfish, with larval density of the three taxa positively associated

with water depth. Such observations imply that stable water

masses off the continental shelf (i.e., slope waters) represent more

suitable habitat of billfish and swordfish larvae. Coastal water

masses in the NGoM are influenced to a large degree by

freshwater inflow from the Mississippi River, and tongues of lower

salinity water with unique salinity-temperature profiles and color

(i.e., green) were transported to stations within our sampling

corridor on several occasions. Billfish and swordfish larvae were

rare at stations inundated by coastally derived water masses that

were characterized by lower salinity and higher sea surface

temperature. Given that most pelagic larvae are highly sensitive to

changes in salinity and/or temperature [55,56], areas where

coastal and offshore water masses mix may maintain physico-

chemical conditions that are unfavorable physiologically to billfish

and swordfish larvae, possibly resulting in lower condition, lower

growth, and higher mortality compared to individuals transported

to or entrained in offshore water masses.

Figure 4. Response plots for abiotic variables on the density of sailfish, blue marlin, white marlin, and swordfish larvae from final
generalized additive models (GAMs). Plot includes sea surface temperature (top), salinity (middle) and sea surface height anomaly (bottom).
Solid lines denote smoothed values and shaded areas on each plot represent 95% confidence intervals. Dashed line at y = 0 displayed on each plot.
doi:10.1371/journal.pone.0034180.g004
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Mesoscale hydrographic features within ocean basins are also

known to influence the transport and retention of larvae through

physical processes, which in turn regulate patterns of distribution

and abundance [57–59]. In the NGoM, the Loop Current is the

most conspicuous mesoscale feature and areas of convergence

between this current and associated features (eddies) are often

associated with increased primary and secondary production

[60,61]. In the present study, abundances of sailfish, blue marlin,

and swordfish larvae increased as distance to the Loop Current

declined, with numbers peaking at stations near or on the margin of

this boundary current. This finding supports the premise that billfish

and swordfish larvae aggregate on or close to frontal features near

the periphery of the Loop Current. The entrainment or aggregation

of fish larvae at frontal zones with sharp gradients in physicochem-

ical properties is well documented, and the abundance of larvae is

routinely higher in frontal zones relative to adjacent water masses

[62,63]. The accumulation of fish larvae within frontal features is

primarily attributed to the physical process of hydrodynamic

convergence [64], and the complexity and stability of convergence

zones often determines the level of retention or dispersion of larvae

within these areas of discontinuity [65]. If observed aggregations of

billfish and swordfish larvae along the frontal zone of the Loop

Current is primarily due to hydrodynamic convergence, then intra-

and inter-annual variation in the spatial configuration (shape and

penetration) of this mesocale feature and associated frontal zones

may determine the spatial distribution of billfish and swordfish

larvae in the NGoM.

Fronts, eddies, and associated areas of convergence are also

known to enhance the vertical transport of nutrients to surface

waters, often resulting in higher primary and secondary production

relative to surrounding areas [66]. In response, ecological conditions

at frontal zones, namely enhanced prey resources, may have

improved the growth and survival of billfish and swordfish larvae,

possibly leading to higher overall abundances. Evidence of a

‘trophic advantage’ due to increased production has been

demonstrated previously for species inhabiting frontal zones (e.g.,

improved condition, growth, and survival [67]). In our study, sea

surface height anomaly was retained in the final models of sailfish,

blue marlin, and swordfish, and we observed higher densities of all

three taxa at stations with negative sea surface height anomalies.

The presence of negative sea surface height anomalies often signifies

that upwelling is occurring, which results in a flux of cool, nutrient-

rich waters into the euphotic zone. Eddy-induced upwelling is an

important source of new production in the Atlantic Ocean and Gulf

of Mexico, and has been shown to increase overall biological

productivity in pelagic ecosystems [68,69]. Our observation of peak

Figure 5. Response plots for abiotic variables on the density of sailfish, blue marlin, white marlin, and swordfish larvae from final
generalized additive models (GAMs). Plot includes distance to Loop Current (top), sea surface current velocity (middle) and depth (bottom).
Solid lines denote smoothed values and shaded areas on each plot represent 95% confidence intervals. Dashed line at y = 0 displayed on each plot.
doi:10.1371/journal.pone.0034180.g005
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densities of billfish and swordfish larvae in regions with negative sea

surface height anomalies and lower sea surface temperatures suggest

that these areas could be experiencing local upwelling and enhanced

production. In turn, new production may enhance prey resources

for consumers such as billfish and swordfish larvae, potentially

resulting in improved survival rates and higher cohort biomass.

Although elevated abundances of billfish and swordfish larvae in

areas with negative sea surface height anomalies may be due to a

trophic advantage, sea surface chlorophyll (proxy for primary

production) was only retained in one of the models (white marlin)

and its influence was minor.

In addition to primary production by phytoplankton, Sargassum

is another producer known to influence the distribution and

abundance of pelagic consumers, often aggregating juvenile fishes

[70,71]. Sargassum biomass was inversely related to the abundance

of blue marlin, white marlin, and swordfish larvae, indicating that

surface waters with significant amounts of Sargassum may not

represent suitable habitat for billfish and swordfish larvae. Our

finding of a negative relationship with Sargassum biomass may be

due in part to the fact that these floating mats concentrate juvenile

fishes or potential predators of billfish and swordfish larvae [72],

which would result in higher predation mortality and lower overall

abundance. Previous research in the NGoM has shown that

natural mortality rates on pelagic fish larvae can be higher in areas

that concentrate predators (e.g. Mississippi River plume or

associated fronts) relative to other areas of the continental shelf

[67], and therefore increased predator biomass under floating

Sargassum mats may correspondingly lead to higher natural

mortality rates for billfish and swordfish larvae. Alternatively, the

negative relationship between Sargassum and the abundance of

billfish and swordfish larvae may be due to water mass properties

and the geographic location of our stations. The production and

biomass of Sargassum is known to increase markedly as mats move

into nearshore waters with higher nutrient loads, and our net tows

with the greatest Sargassum biomass were typically observed at

northern stations (28uN) or areas closer to freshwater sources. The

mismatch between Sargassum biomass and the density of billfish or

swordfish larvae may be due to the fact that environmental

conditions and regions that promote Sargassum growth are simply

unfavorable for billfish and swordfish larvae. Interestingly, the only

species showing increases in abundance at moderate to high

Sargassum biomass was sailfish, and adults of this species often

reside in more coastal regions relative to blue marlin, white marlin,

or swordfish [73,74]. Regardless of the mechanism responsible for

Figure 6. Response plots of biotic variable, Sargassum biomass, on the density of sailfish, blue marlin, white marlin, and swordfish
larvae from final generalized additive models. Solid lines denote smoothed values and shaded areas on each plot represent 95% confidence
intervals. Dashed line at y = 0 displayed on each plot.
doi:10.1371/journal.pone.0034180.g006
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the observed mismatch, our results clearly show that unlike other

species that rely on Sargassum as essential fish habitat [70,72], it

does not appear to represent important early life habitat of blue

marlin, white marlin or swordfish, at least during the first few

weeks of life.

Conclusions
Fisheries-independent indices of Atlantic billfish and swordfish

abundance are valuable for assessing managed stocks, and larval-

based indices are increasingly being used to assess population

trends and identify critical spawning and nursery areas. Here, we

Figure 7. Diversity of billfish and swordfish catches in northern Gulf of Mexico. Average species richness (top) based on the mean number
of target species (sailfish, blue marlin, white marlin, and swordfish) collected during each net deployment. Species richness (bottom) based on the
total number of target species observed in each area. Cell size for estimates of diversity set at 0.25u and samples were pooled across the three-year
sampling period (2006–2008).
doi:10.1371/journal.pone.0034180.g007
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highlight the value of the NGoM as important early life habitat of

billfishes and swordfish, and describe specific associations between

billfish and swordfish larvae and oceanographic conditions using a

GAM framework. Our results clearly demonstrate that mesoscale

features impact the distribution and abundance of billfish and

swordfish larvae, and habitat suitability of all four species appears

to be strongly linked to physicochemical attributes of the water

masses they inhabit.
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